Gli scienziati trovano la chiave per risolvere il mistero (antichissimo) dell’antimateria
Gli esperimenti del team sono iniziati con un campione di torio-232, che ha un’emivita di 14 miliardi di anni, il che significa che si decompone molto lentamente
Perché c’è più materia dell’antimateria nell’Universo? Un team di fisici ha scoperto un elemento che potrebbe essere la chiave per svelare questo antico mistero. Un team di ricercatori dell’Università della Scozia occidentale e dell’Università di Strathclyde hanno scoperto che uno degli isotopi dell’elemento torio ha un nucleo a forma di pera, molto più di quanto si pensasse in precedenza. Nuclei simili al torio-228 possono aiutare a trovare una risposta al mistero che circonda la materia e l’antimateria.
Il modello standard prevede che ogni particella fondamentale può avere un’antiparticella simile. Le antiparticelle sono quasi identiche alle loro controparti materiali, ad eccezione del semplice fatto che contengono cariche opposte. Pertanto, e secondo il Modello standard, materia e antimateria devono essere state formate in quantità uguali al momento del Big Bang. Tuttavia, il nostro universo ha molta più materia dell’antimateria.
In teoria, secondo l’articolo scientifico recentemente pubblicato su Nature Physics, un momento del dipolo elettrico (EDM) può consentire alla materia e all’antimateria di decomporsi a velocità diverse.
Cosa sono i nuclei a forma di pera!
I nuclei a forma di pera sono stati proposti come sistemi fisici ideali in cui si cerca l’esistenza di un momento del dipolo elettrico in una particella fondamentale, come un elettrone. La forma a pera significa che il nucleo genera un EDM avendo i protoni e i neutroni distribuiti in modo non uniforme.
I ricercatori hanno scoperto che i nuclei degli atomi di torio-228 hanno la forma di pera più pronunciata mai scoperta e sono stati quindi identificati come candidati ideali per cercare un momento di dipolo elettrico. Più breve è la durata della vita dello stato quantico, più pronunciata è la forma a pera del nucleo, che a sua volta dà agli scienziati maggiori speranze di trovare un elettroerosione.
Gli esperimenti del team sono iniziati con un campione di torio-232, che ha un’emivita di 14 miliardi di anni, il che significa che si decompone molto lentamente. La catena di decadimento di questo nucleo crea stati meccanici quantistici eccitati del nucleo di torio-228, che decadono in nanosecondo.
Da: Federica Vitale
Fonte: